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Abstract 
Understanding how analogy is used in problem solving is an 
important problem in cognitive science.  This paper describes 
a model of using worked solutions to solve new problems, in 
terms of structure-mapping processes in the Companions 
cognitive architecture.  The Educational Testing Service 
independently evaluated the flexibility of the system by using 
AP Physics problems that were systematically varied to test 
different types of transfer.  We also show that the model 
provides an explanation for many of the analogy events in 
VanLehn’s (1998) analysis of the use of analogy by students 
solving physics problems. 
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Introduction 
Cognitive science research has shown that analogy plays 
important roles in problem solving and learning (Gentner & 
Gentner, 1983; Holyoak 1985; Ross 1987; Novick 1988).  
One role is facilitating problem solving by using worked 
solutions.  For example, VanLehn and Jones (1993a) 
observed that students used analogical reasoning in solving 
physics problems even when the underlying first principles 
knowledge was already known and had been successfully 
used before.  This paper describes how the Companions 
cognitive architecture (Forbus & Hinrichs 2006) models 
example use in solving AP Physics problems.  The AP 
Physics exam is taken by high school students in order to 
receive college credit.  This is an interesting domain 
because students find such problems difficult and there is a 
wealth of prior cognitive science solving research on 
physics problem.  Figure 1 shows four examples generated 
for this work by the Educational Testing Service (ETS), the 
company which administers the AP Physics exam.   

We start by briefly reviewing the Companions 
architecture, focusing on the key analogical processes used.  
Then, we describe how a Companion uses these processes to 
solve physics problems.  Next, the results of an external 
evaluation demonstrating the system’s ability to 
successfully transfer across different problem variations are 
summarized.  This is followed by an analysis of the 90 
problems from this evaluation in terms of analogy events (as 
defined by VanLehn (1998)), showing a qualitative match 
with the patterns of analogy events found in protocols.  
Finally, we discuss other related work and future plans. 

The Companions Architecture 
The Companions architecture is exploring the hypothesis 
that structure-mapping operations (Gentner 1983; Forbus & 
Gentner 1997) are important building blocks for modeling 
reasoning and learning.  This hypothesis suggests that 
within domain analogies, where new situations are 
understood in terms of prior understood examples, provide 
an important source of breadth and robustness of human 
common sense reasoning.  Forbus & Hinrichs (2006) 
provides an overview of the Companions architecture; for 
this paper, the key processes to understand are analogical 
matching and retrieval.  We summarize each in turn. 

The Structure-Mapping Engine (SME) models the 
structure-mapping process of comparison (Falkenhainer, 
Forbus, & Gentner 1989). Structure-mapping postulates that 
this process operates over two structured representations 
(the base and target), and produces one or more mappings, 

Figure 1: Example AP Physics problems 
 

1. A ball is released from rest from the top of a 200 m tall 
building on Earth and falls to the ground. If air resistance 
is negligible, which of the following is most nearly equal 
to the distance the ball falls during the first 4 s after it is 
released? (a) 20m; (b) 40m; (c) 80m; (d) 160m. 

2. An astronaut on a planet with no atmosphere throws a 
ball upward from near ground level with an initial speed 
of 4.0 m/s. If the ball rises to a maximum height of 5.0 m, 
what is the acceleration due to gravity on this planet? (a) 
0.8m/s2; (b) 1.2m/s2; (c) 1.6m/s2; (d) 20m/s2; 

3. A box of mass 8kg is at rest on the floor when it is pulled 
vertically upward by a cord attached to the object. If the 
tension in the cord is 104N, which of the following 
describes the motion, if any, of the box? (a) It does not 
move; (b) It moves upward with constant velocity; (c) It 
moves upward with increasing velocity but constant 
acceleration; (d) It moves upward with increasing 
velocity and increasing acceleration. 

4. A block of mass M is released from rest at the top of an 
inclined plane, which has length L and makes an angle q 
with the horizontal. Although there is friction between the 
block and the plane, the block slides with increasing 
speed. If the block has speed v when it reaches the bottom 
of the plane, what is the magnitude of the frictional force 
on the block as it slides?  (a) f = Mgsin(q); (b) f = 
Mgcos(q); (c) f = MgLsin(q)- ½Mv2 ;(d) f = [MgLsin(q)- 
½Mv2]/2. 
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each representing a construal of what items (entities, 
expressions) in the base go with what items in the target.  
This construal is represented by a set of correspondences.  
Mappings also include a score indicating the strength of the 
match, and candidate inferences which are expressions from 
the base which, while unmapped in their entirety, have 
subcomponents that participate in the mapping’s 
correspondences.  SME operates in polynomial time, using a 
greedy algorithm (Forbus & Oblinger 1990). 

MAC/FAC (Forbus et al. 1994) models similarity-based 
retrieval given a case of facts, or probe, and a large case 
library.  The first stage, using a special kind of feature 
vector automatically computed from structural descriptions, 
rapidly selects a few (typically three) candidates from the 
case library.  The second stage uses SME to compare these 
candidates to the probe, returning one candidate reminding 
(or more, if they are very close) for the probe. 

As performance systems, both SME and MAC/FAC have 
been used successfully in a variety of different domains, and 
as cognitive models, both have been used to account for a 
variety of psychological results (Forbus 2001). 

Solving Problems by Worked Solutions 
As noted above, students commonly use analogies with 
worked solutions to solve physics problems.  Our 
Companion’s model starts with some basic mathematical 
skills, a broad common sense ontology and some qualitative 
mechanics, representing the background knowledge that a 
student might bring to such problems.  The representations 
use the ontology of the ResearchCyc knowledge base, plus 
our own extensions.  ResearchCyc is useful because it 
includes over 30,000 distinct types of entities, over 8,000 
relationships and functions, and 1.2 million facts 
constraining them.  Thus, everyday concepts like 
“throwing” and “ball” are already defined, rather than us 
generating them specifically for the purpose of this project. 

Unlike many students, our model does not start with any 
knowledge of the equations of physics.  All equations and 
knowledge of when to apply them come from analogies with 
worked solutions, worked through example problems found 
in textbooks.  While not representative of many students, it 
provides an interesting extreme assumption for measuring 
the power of analogy in its purest form. 

The problems and worked solutions used throughout this 
work were generated by the Educational Testing Service, 
the company which administers the AP Physics exam.  The 

representation conventions used were established in 
collaboration with us and with Cycorp, the creators of the 
ResearchCyc KB contents.  ETS then generated all 
problems and worked solutions using templates, which were 
not available to us. 

Example Problem and Worked Solution 
Figure 2 shows part of the 37 facts used to represent 
Problem 2 from Figure 1.  The worked solutions were 
created at roughly the level found in textbooks.  They are 
not deductive proofs, nor problem solving traces in the 
language of our solver.  This is important, because it 
provides more opportunities for the system to learn (and to 
make mistakes).  For Problem 2 from Figure 1, the worked 
solution consisted of 7 steps. 

1. Categorize the problem as distance-velocity problem 
under constant acceleration  

2. Instantiate the distance-velocity equation (Vf
2 = Vi

2 – 
2ad)  

3. Given the projectile motion and lack of atmosphere, 
infer that the acceleration is equal to the acceleration 
due to gravity (a = g) 

4. Because of the projectile motion event, the bat is not 
moving at the maximum height (Vf = 0 m/s) 

5. Solve the equations for the acceleration due to 
gravity (g = -1.6 m/s2) 

6. Sanity check the answer (the answer is consistent) 
7. Select the appropriate multiple choice answer (“c”) 

Figure 3 illustrates how step 3 is represented.  Worked 
solutions are stored along with the problem description as a 
case in the Companion’s case library, so they are available 
when solving new problems. 

Solving Problems via Analogy 
Problems are presented as cases.  The first phase of problem 
solving is to generate an analogy with a relevant example.  
This is done in three steps.  First, the Companion uses 
MAC/FAC to try to retrieve a worked solution from the case 
library, using the problem as the probe.  The mapping is 
examined to see whether or not it includes all of the 
problem’s event structure, i.e., the physical events described Figure 2: Part of Problem 2 representation 

 (groundOf Planet-1 Ground-1) 
(performedBy Throwing-1 Astronaut-1) 
(no-GenQuantRelnFrom  

in-ImmersedFully Planet-1 Atmosphere) 
(eventOccursNear Throwing-1 Ground-1) 
(objectThrown Throwing-1 Ball-1) 
(querySentenceOfQuery Query-1 
 (valueOf (AccGravityFn Planet-1) Acc-1) 
…   

Figure 3: Problem 2 Worked Solution Step 3 

(stepType Step3 DeterminingValueFromContext) 
(stepUses Step3 (isa Throwing-1 ThrowingAnObject)) 
(stepUses Step3 (occursNear Throwing-1 Ground-1)) 
(stepUses Step3  

   (no-GenQuantRelnFrom  
        in-ImmersedFully Planet-1 Atmosphere)) 

(stepUses Step3 (objectMoving Upward-1 Ball-1)) 
… 
(stepUses Step3 (direction Upward-1 Up-Directly))  
(solutionStepResult Step3  

   (valueOf  
     (AtFn ((QPQuantityFn Speed) Ball-1) 
                (EndFn Upward-1)) 
     (MetersPerSecond 0))) 
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in the problem, such as motion.  If not all events are 
mapped, MAC/FAC is used again, but with only the 
unmapped events as the probe.  This process continues until 
either there is no more unmapped event structure or no more 
matches are found.  The result is one or more examples that 
should provide relevant facts about the new problem, 
including equations.  Problem solving proceeds by mining 
the candidate inferences of these mappings. 

The system begins by using rules to categorize the 
problem and determine which quantity or quantities should 
be solved for.  (In Problem 3, for example, determining 
which answer is consistent requires finding values for 
velocity and acceleration.)  Values for quantities are found 
in three ways.  (1) The value might already be known as part 
of the problem.  (2) The candidate inferences of the 
mapping may contain a solution step in which the goal 
parameter was assumed in the worked solution.  (3) The 
candidate inferences provide an equation containing the 
sought quantity.  In this case, the system first looks for 
values for the other quantities in the equations, and then 
attempts to solve the equation for the original parameter.  
The algebra routines are straightforward, based on the 
system in Forbus & de Kleer (1993).  We currently treat the 
mathematical operations involved in solving a problem as a 
black box, not subject to learning. 

To determine whether or not a solution step suggested by 
candidate inferences is valid, the system checks its context 
in the worked solution.  Suppose for example the step 
assumes that the acceleration of a rock in free fall is 10 m/s2, 
because the rock is falling on Earth and the problem says to 
ignore air resistance.  To apply this step, the system must be 
able to infer that there is no air resistance in the current 
situation and that the event occurs on Earth.  This 
verification helps guard against inappropriate applications 
of solution steps. 

Before selecting a multiple choice answer, the system 
searches the candidate inferences for any solution steps 
representing sanity checks.  For example, a problem asking, 
“How far would a ball fall off a 200m building in 4s?” 
would have a sanity checking step in which the answer, 
80m, was compared to the height of the building, 200m.  
Since the answer is less than the height of the building, the 
result of the step is that the ball fell 80 meters.  When this 
worked solution is used in solving future problems, the 
analogy produces candidate inferences indicating the type of 
check and corresponding quantities in the current problem 
that are involved.  Currently, we only employ this check if 
the quantity sought for is involved in the comparison.  This 
is because it is clear how to resolve a failure, i.e. use the 
value compared against it instead, because it constitutes a 
limit point (Forbus 1984) for that situation.  This is a 
reasonable heuristic for Mechanics but in other situations 
and domains what to do is much less clear, and we plan to 
learn rules for resolving such problems in the future. 

After an answer is found to be consistent, it is compared 
against each of the answer choices.  The system selects 
either the closest answer for quantity value questions or the 

consistent answer choice in a qualitative behavior problem, 
such as Problem 3 in Figure 1. 

Experimental Results 
ETS conducted a formal evaluation of the system’s problem 
solving performance, and we collected additional 
information on analogy events afterwards.  ETS presented 
quizzes and worked solutions to a Companion running on a 
cluster remotely.  The format of the questions mirrors the 
Chi et al. (1989) study by looking at problem solving over 
systematic variations of mechanics problems.  The Chi et al. 
study involved giving the subjects worked solutions of three 
different problem types and then testing them on four 
isomorphic problems of each type followed by a second set 
of problems from the same chapter but not isomorphic.  
First, we describe the ETS evaluation of the system over 
systematic variations of problems, called here transfer 
levels.  Then, we compare the distribution of the analogy 
events in this study to those reported by VanLehn’s (1998) 
analysis of the Chi et al. protocols. 

Problem Solving Across Transfer Levels 
Our study involved having five worked examples of each of 
the four different problem types for a total of 20 problems in 
memory.  Then the system was presented quizzes of 
systematic variations of problems representing different 
transfer levels as follows1: 

1. Parameterization: changing the parameter values, but 
not qualitative outcome 

2. Extrapolation:  changing the parameters such that the 
qualitative outcome changes as well 

3. Restructuring: asking for a different parameter 
4. Extending: including distracting information 
5. Restyling: changing the types of everyday objects 

involved 
6. Composing: requiring concepts from multiple 

problems  
The problems and their worked solutions were created by 

ETS in collaboration with Cycorp.  The authors saw less 
than half of the transfer problems prior to the evaluation.  
Each transfer level (TL) contained 5 problem variations of 
each type making 20 total problems per TL.  TL-2 only 
contained 10 problems because two of the problem types 
could not be altered to produce qualitatively different 
outcomes, Problems 2 and 4 from Figure 1.  In each transfer 
level, every problem had a transformation based upon the 
transfer level to a specific worked example in memory.  The 
data presented here is a representative subset of the whole 
evaluation, which also investigated learning rates. 

Table 1 presents the system’s performance by transfer 
level.  The significance is computed against random chance 
on a 4 option multiple choice test.  Given the fact that this 
evaluation was conducted externally on unseen problems 

                                                        
1 These levels are from a 10-level catalog of transfer tasks used in 

DARPA’s Transfer Learning Program 
(http://fs1.fbo.gov/EPSData/ODA/Synopses/4965/BAA05-29/BAA05-
29TransferLearningPIP.doc) 
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and our analysis of its errors, the system performed quite 
well.  Four out of the six transfer levels were statistically 
significant (p<.05).  For TL-1, TL-4, and TL-5, the system 
scored at least 90% correct.  Our rates were not as high for 
the other levels; TL-2 was 50%, TL-3 was 25%, and TL-6 
was 44%.  Even when the system failed to produce the 
correct answer, the retrieval algorithm always selected the 
correct problem or problems to reason from.  This mirrors 
the findings of VanLehn and Jones (1993b) where human 
subjects rarely referenced examples that were not maximally 
similar to the problem. 

While the results on three of the levels illustrate the 
strengths of the analogical approach, there are some results 
that require more explanation.  First, in TL-2, the 
representations concerning the worked solution for problem 
type 3 incorrectly formulate the sanity checking step in 
which if a negative acceleration is calculated, the 
acceleration is inferred to be zero.  We were unable to 
correct this given the external nature of the evaluation.  The 
errors in TL-3 and TL-6, where the Companion was unable 
to score above 50 percent on any of the quizzes, were due to 
limitations in the problem solver’s strategies.  For Problem 
Type 3, the solver did not handle substituting different 
parameter values for answer choices efficiently enough to 
prevent timeouts.  The low scores on TL-6 are because the 
solver’s strategies assume that a given problem either 
demands numerical values or symbolic values, but not both, 
and thus it could not handle a composition of a symbolic 
problem with a numerical problem.  Given the system's 
focus on transferring domain knowledge, it could not 
overcome these problems.  Future work in learning problem 
solving strategies and interactivity is motivated by these 
results. 

Analysis of Analogy Events 
Chi et al. (1989) collected verbal protocols from 9 subjects 
learning Newtonian Mechanics while they studied worked 
examples and solved a series of problems.  These protocols 
were used to investigate the differences between good and 
poor problem-solvers, including creating the Cascade 
system, which modeled the self-explanation effect 
(VanLehn et al. 1992).  When attempting to fit Cascade to 
this data, VanLehn and Jones (1993) observed that people 
used analogical reasoning even they could have used first-
principles knowledge.  Later, VanLehn (1998) reanalyzed 
the original protocols, leading to a new taxonomy of 
analogy events: 

• Initialization events – the subject sets up a mapping 
between the examples and the problems. 

• Transfer events – the subject infers something about the 
solution from an example.  These events were further 
divided by the type of inference made: 

1. Line: The subject transferred a whole equation, 
vector, or diagram. 

2. Part of a line: The subject transferred a detail 
from a line, such as whether a projection function 
was sine or cosine, or whether a vector went up or 
down. 

3. Search control: The subject made the decision on 
what steps to do by consulting the example and 
seeing what steps it did. 

4. Checking: The subject decided whether their most 
recent action or decision was correct by 
consulting the example. 

5. Failure: The subject failed to find anything useful 
during this transfer event. 

Initialization events were indicated by the subject flipping 
the book to a worked solution, reading some of the example 
and deciding if it will be useful to solve the current problem.  
VanLehn found that initialization events usually occur at the 
beginning of the problem solving, consistent with (Bassok 
& Holyoak 1989; Faries & Reiser 1988; Ross 1989). 

Most of these events can easily be mapped to our model.  
In our model, initialization events occur at the beginning of 
problem solving when the system uses MAC/FAC to 
retrieve a similar example(s) from memory.  Our use of 
recursive retrievals for complex analogs is consistent with 
VanLehn’s finding that for complex problems, there could 
be multiple initialization events.   

Because our model answers all problems using analogy, it 
relies heavily on what would be construed as transfer events 
in VanLehn’s analysis.  Line transfers are indicated in our 
model in two ways: (1) Using a candidate inference to map 
an equation from the worked solution onto the problem and 
(2) inferring parameter values from the problem situation.  
Consistent with VanLehn’s findings, these events occur 
throughout the problem solving process.   

While similar in some ways, there are deep differences 
between our model and Cascade.  In Cascade, line transfer 
events are only used when rule-based reasoning reaches an 
impasse.  Cascade modeled analogical search control by 
storing triples containing the problem, goal, and the rule 
used to achieve the goal.  The triples represent an 
approximation of episodic memory.  When the system faced 
search control decisions in the future, it would look for a 
similar goal in memory and follow that rule.  By contrast, 
our model uses domain-independent processes (structural 
alignment and similarity-based retrieval) to import 
information from the worked solution into the current 
problem. 

The other transfer events are modeled incompletely.  Our 
model does not have anything corresponding to part-of-line 
transfers.  In any case, these events are extremely rare, 
accounting for just 3% of all transfer events in the protocols.  

Table 1: Accuracy Results 
Transfer Level (# of problems) Percentage Correct 

1 – Parameterization (20) 90% (p<.05) 
2 – Extrapolation (10) 50% (p<.10) 
3 – Restructuring (20) 25% (p=.58) 
4 – Extending (20) 90% (p<.05) 
5 – Restyling (20) 95% (p<.05) 
6 – Composing (20) 45% (p<.05) 
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The closest analog to search control is deciding to use a 
retrieved equation.  Checking in our model corresponds to 
using a sanity check.  Transfer failures are indicated when a 
precondition test fails, blocking the use of a candidate 
inference.   

Given these differences, a quantitative comparison of the 
number of different analogy events would not be 
informative.  However, in addition to the consistencies 
noted above, we would expect there to be a qualitative 
pattern of consistency.  That is, we would expect that our 
model will predict more line transfer events than observed 
in protocols, since it is at the extreme poverty end of 
assumptions about initial knowledge.  Second, analogical 
search control is done implicitly in our system; therefore our 
system has no explicit search control events.  Third, we 
believe our model to be incomplete in terms of modeling 
sanity checking and transfer failures; therefore we expect to 
see fewer such events than in protocols. 

Table 2 illustrates the number of analogy events by type 
per problem.  The “Other” event type contains the analogy 
events not modeled by our system, including search control 
and part of line transfer as well as the miscellaneous events 
from the protocols.  The Companion’s analogy events are 
further divided depending on if the problem in which the 
event occurred was solved correctly.  Also, percentages of 
total transfer events are supplied next to each transfer event 
in each condition. 

Our results have a reasonable qualitative fit with 
VanLehn’s human protocols. VanLehn summarized the 
results concerning type of information transferred in the 
protocols by saying “The basic result is simply that most 
students, both Good and Poor, transferred whole lines from 
the example to the problem” (1998, p.  364).  Our system 
was even more dependent on line transfers for problem 
solving due to the fact that the vast majority of the domain 
knowledge used to solve these problems came from 
examples.  The majority of the “Other” transfers were 
search control events, which motivates us to focus on search 
control events in our future work.  While our model’s sanity 
checking and failed transfer events are incomplete, both of 
these occurred more frequently on correctly solved 
problems.  This, in addition to the fact that the protocols 

noted even more of these types of events per problem, 
indicates that a more complete model of these analogy 
events could lead to more robust problem solving. 

Related Work 
A number of prior analogical problem solving models, 
including PHINEAS (Falkenhainer 1990), Melis and 
Whittle's inductive theorem prover (1999), and Klenk et al.'s 
everyday physical reasoning (2005), import and adapt the 
entire solution of the example to the current problem.  Other 
systems such as Cascade (VanLehn 1998) and ACT-R 
(Anderson 1993) use analogy primarily to overcome 
impasses in rule-based reasoning.  Finally, there are systems 
such as Eureka (Jones 1989), derivational analogy in 
Prodigy (Veloso & Carbonell 1993), and APSS (Ouyang & 
Forbus 2006) that use analogy to improve efficiency. 

Discussion and Future Work 
We have shown how the Companions architecture can be 
used to model the use of analogy with worked solutions to 
solve AP Physics problems.  We do not know of any other 
model which has been subjected to this kind of independent 
evaluation over this range of systematic variations in 
problem types, as well as having a reasonable qualitative fit 
to human protocol data.  We find this very encouraging.  
However, the material we have tested it on only represents 
roughly 20% of the material in the Newtonian Mechanics 
portion of the AP Physics exam.  Our goal is to expand the 
model where it can learn all of the material needed to solve 
AP Physics exams.   

Three investigations are planned to achieve this goal.  (1) 
Generalization from multiple analogies is an important 
aspect of human problem solving and in transitioning from 
novice to expert (Elio & Scharf 1990; Rieman et al. 1993; 
Kotovsky & Gentner, 1996).  Therefore, we plan to 
construct generalizations using on SEQL (Kuehne et al. 
2000), a structure mapping account for generalization and 
categorization, to facilitate the system’s ability to apply its 
knowledge more broadly.  For example, equations might be 
learned as encapsulated histories (Forbus 1984), which 
being parameterized could be used to model first principles 
reasoning.  (2) As our system gains more domain 
knowledge, it will be necessary to extend our model to 
include analogical search control events.  For this, we plan 
on incorporating the analogical search control mechanism 
used in APSS (Ouyang & Forbus 2006).  (3) As Chi et al. 
(1981) note, one difference between novices and experts 
appears to be their encoding strategies.  Consequently, we 
plan to explore methods for learning new encoding 
strategies, to capture this ability to move more directly from 
the everyday world to models that can be used to solve 
problems. 
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Nashville, TN. 

their work representing the problems and the worked 
solutions.  We thank Patrick Kyllonen, Catherine Trapani, 
and Vincent Weng at ETS for providing the testing 
materials and administering this experiment. 

References 
Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: 

Lawrence Erlbaum Associates. 
Bassok, M., & Holyoak, K. J. (1989).  Interdomain transfer 

between isomorphic topics in algebra and physics.  
Journal of Experimental Psychology: Learning, Memory, 
& Cognition, 15, 153-166. 

Chi, M.T.H. (1997). Quantifying qualitative analyses of 
verbal data: A practical guide. The Journal of the 
Learning Sciences, 6, 271-315. 

Chi, M.T.H., Feltovich, P., & Glaser, R. (1981).  
Categorization and representation of physics problems by 
experts and novices. Cognitive Science, 5, 121-152. 

Chi, M.T.H., Bassok, M., Lewis, M.  W., Reimann, P., & 
Glaser, R. (1989). Self-explanations: How students study 
and use examples in learning to solve problems.  
Cognitive Science, 15, 145-182. 

Elio, R., & Scharf, P. B. (1990).  Modeling novice-to-expert 
shifts in problem solving strategy and knowledge 
organization. Cognitive Science, 14,579-639. 

Faries, J. M., & Reiser, B. J. (1988). Access and use of 
previous solutions in a problem solving situation.  In V. 
L. Pate1 & G. L. Groen (Ed.), Proceedings of the Tenth 
Annual Conference of the Cognitive Science Society.  
Hillsdale, NJ: Lawrence Erlbaum Associates. 

Falkenhainer, B. (1990). A unified approach to explanation 
and theory formation. In J. Shrager and P. Langley (Eds.), 
Computational models of scientific discovery and theory 
formation. Morgan Kaufmann Publishers. 

Falkenhainer, B., Forbus, K.  and Gentner, D.  (1989). The 
Structure-Mapping Engine. Artificial Intelligence, (41). 

Forbus, K. (1984). Qualitative process theory. Artificial 
Intelligence 24:85–168. 

Forbus, K.  (2001). Exploring analogy in the large.  In 
Gentner, D., Holyoak, K., & Kokinov, B. (Eds.) Analogy: 
Perspectives from Cognitive Science.  MIT Press. 

Forbus, K.  & de Kleer, J.  (1993).  Building Problem 
Solvers, MIT Press. 

Forbus, K.  & Gentner, D.  (1997).  Qualitative mental 
models: Simulations or memories? Proceedings of the 
Eleventh International Workshop on Qualitative 
Reasoning, Cortona, Italy, June 3-6, pp.  97-104. 

Forbus, K., Gentner, D., & Law, K. (1994) MAC/FAC: A 
model of similarity-based retrieval.  Cognitive Science, 
19, 141-205. 

Forbus, K.  & Hinrichs, T.  (2006). Companion cognitive 
systems: A step towards Human-Level AI.  AI Magazine, 
27(2): pp 83-95. 

Forbus, K. & Oblinger, D. (1990). Making SME greedy and 
pragmatic. In Proceedings of CogSci-1990. 

Gentner, D.  (1983).  Structure-mapping: A theoretical 
framework for analogy, Cognitive Science 7(2). 

Gentner, D., & Gentner, D. R. (1983). Flowing waters or 
teeming crowds: Mental models of electricity. In D. 
Gentner & A. L. Stevens (Eds.), Mental models (pp. 99-
129). Hillsdale, NJ: Erlbaum.  

Jones, R.  (1989).  A model of retrieval in problem solving.  
Unpublished Doctoral Dissertation, University of 
California at Irvine, Irvine, CA. 

Holyoak. K.J. (1985). The pragmatics of analogical transfer. 
In G.H. Bower (Ed.), The psychology of teaming and 
motivation. (19). New York: Academic. 

Klenk, M., Forbus, K., Tomai, E., Kim,H., and Kyckelhahn, 
B. 2005. Solving everyday physical reasoning problems 
by analogy using sketches. Proceedings of 20th National 
Conference on Artificial Intelligence (AAAI-05), 
Pittsburgh, PA. 

Kotovsky, L., & Gentner, D. (1996). Comparison and 
categorization in the development of relational similarity. 
Child Development, 67, 2797-2822. 

Novick, L.R. (1988). Analogical transfer, problem 
similarity, and expertise. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 14. 

Ouyang, T. and Forbus, K. 2006. Strategy variations in 
analogical problem solving.  Proc. of AAAI-06 

Reimann, P.,  Wichmann, S., & Schult, T.  J. (1993).  A 
learning strategy model for worked-out examples.  In P.  
Brna. S. Ohlsson, & H. Pain (Eds.), Artificial Intelligence 
in Education: Proceedings of AI-ED93 (pp.  290-297). 
Charlottesville, VA: Association of Advancement of 
Computing in Education. 

Ross, B. (1987). This is like that: The use of earlier 
problems and the separation of similarity effects. Journal 
of Experimental Psychology: Learning, Memory, and 
Cognition, 13, 629-639. 

Ross, B. (1989).  Remindings in learning and instruction. In 
S. Vosniadou & A. Ortony (Ed.), Similarity und 
analogical reasoning.  Cambridge: Cambridge University 
Press. 

VanLehn, K., Jones, R.  M., & Chi, M.T.H.  (1992). A 
model of the self-explanation effect.  The Journal of the 
Learning Sciences, 2(1). 

VanLehn, K., & Jones, R.  M. (1993a).  Learning by 
explaining examples to oneself: A computational model.  
In S.  Chipman & A. Meyrowitz (eds.), Cognitive Models 
of Complex Learning.  Boston, MA: Kluwer Academic 
Publishers. 

VanLehn, K., & Jones, R.  M. (1993b).  What mediates the 
self-explanation effect? Knowledge gaps, schemas or 
analogies? In M. Polson (Ed.), Proceedings of the 
Fifteenth Annual Conference of the Cognitive Science 
Society.  Hillsdale, NJ: Lawrence Erlbaum Associates. 

VanLehn, K.  (1998). Analogy events: How examples are 
used during problem solving.  Cognitive Science 22(19): 
347-388. 

Veloso, M.  and Carbonell, J.  (1993).  Derivational analogy 
in PRODIGY: Automating case acquisition, storage, and 
utilization.  Machine Learning, 10:249-278. 


	Bookmarks
	OLE_LINK1
	OLE_LINK2

	Bookmarks
	OLE_LINK1
	OLE_LINK2


